rm(list=ls()) library(tidyverse) library(broom) library(lsr) library(psych) library(pwr2) library(car) dat<- read_csv("MSc dissertation Volna_20 July 2021_23.40.csv") vaccines <- dat %>% select( Gender, Age, `6x2 time_Page Submit`, `choice6x2`, `choice6x2 time_Last Click`, `6x6a time_Page Submit`,`choice6x6`, `choice6x6 time_Last Click`, `2x6 time_Page Submit`, `coice2x6`, `choice2x6 time_Last Click`, `2x2 time_Page Submit`, `choice2x2`, `choice 2x2 time_Last Click`, Q17, Q18, Q19) vaccines1 <- vaccines %>% gather(condition, time, `6x2 time_Page Submit`, `6x6a time_Page Submit`,`2x6 time_Page Submit`, `2x2 time_Page Submit`) vaccines2 <- vaccines1 %>% gather(choice, vaccine, `choice6x2`, `choice6x6`, `coice2x6`, `choice2x2` ) vaccines3 <- vaccines2 %>% gather(choicetime, tchoice, `choice6x2 time_Last Click`, `choice6x6 time_Last Click`, `choice2x6 time_Last Click`, `choice 2x2 time_Last Click`) vaccines.noNA <- na.omit(vaccines3) names(vaccines.noNA)[names(vaccines.noNA) == "Q17"] <- "satisfaction" names(vaccines.noNA)[names(vaccines.noNA) == "Q18"] <- "confidence" names(vaccines.noNA)[names(vaccines.noNA) == "Q19"] <- "regret" vaccines.noNA$condition <- recode_factor(vaccines.noNA$condition, `6x2 time_Page Submit` = "high info\\low opt", `6x6a time_Page Submit` ="high info\\high opt", `2x6 time_Page Submit` = "low info\\high opt", `2x2 time_Page Submit` = "low info\\low opt") vaccines.noNA$Gender <- recode_factor(vaccines.noNA$Gender, `1` = "male", `2` = "female", `3` = "non-binary/thirdgender", `4` = "prefernottosay") vaccines.noNA <- vaccines.noNA[which(vaccines.noNA$Age >= 18),] summary(vaccines.noNA) vaccines.noNA.s <- vaccines.noNA %>% separate(condition, into = c('Information','Options'),sep = '\\\\') vaccines.noNA.s$Information<- as.factor(vaccines.noNA.s$Information) vaccines.noNA.s$Options<- as.factor(vaccines.noNA.s$Options) head(vaccines.noNA.s) summary(vaccines.noNA.s) vaccines.means.t <- vaccines.noNA.s%>% group_by(Information, Options)%>% summarise(mean = mean(tchoice, na.rm = TRUE), sd = sd(tchoice, na.rm = TRUE)) (vaccines.means.t) vaccines.means.t.i <- vaccines.noNA.s%>% group_by(Information)%>% summarise(mean = mean(tchoice, na.rm = TRUE), sd = sd(tchoice, na.rm = TRUE)) (vaccines.means.t.i) vaccines.means.t.o <- vaccines.noNA.s%>% group_by(Options)%>% summarise(mean = mean(tchoice, na.rm = TRUE), sd = sd(tchoice, na.rm = TRUE)) (vaccines.means.t.o) vaccines.means.s <- vaccines.noNA.s%>% group_by(Information, Options)%>% summarise(mean = mean(satisfaction, na.rm = TRUE), sd = sd(satisfaction, na.rm = TRUE)) (vaccines.means.s) vaccines.means.s.i <- vaccines.noNA.s%>% group_by(Information)%>% summarise(mean = mean(satisfaction, na.rm = TRUE), sd = sd(satisfaction, na.rm = TRUE)) (vaccines.means.s.i) vaccines.means.s.o <- vaccines.noNA.s%>% group_by(Options)%>% summarise(mean = mean(satisfaction, na.rm = TRUE), sd = sd(satisfaction, na.rm = TRUE)) (vaccines.means.s.o) vaccines.means.c <- vaccines.noNA.s%>% group_by(Information, Options)%>% summarise(mean = mean(confidence, na.rm = TRUE), sd = sd(confidence, na.rm = TRUE)) (vaccines.means.c) vaccines.means.c.o <- vaccines.noNA.s%>% group_by(Options)%>% summarise(mean = mean(confidence, na.rm = TRUE), sd = sd(confidence, na.rm = TRUE)) (vaccines.means.c.o) vaccines.means.c.i <- vaccines.noNA.s%>% group_by(Information)%>% summarise(mean = mean(confidence, na.rm = TRUE), sd = sd(confidence, na.rm = TRUE)) (vaccines.means.c.i) vaccines.means.r <- vaccines.noNA.s%>% group_by(Information, Options)%>% summarise(mean = mean(regret, na.rm = TRUE), sd = sd(regret, na.rm = TRUE)) (vaccines.means.r) vaccines.means.r.i <- vaccines.noNA.s%>% group_by(Information)%>% summarise(mean = mean(regret, na.rm = TRUE), sd = sd(regret, na.rm = TRUE)) (vaccines.means.r.i) vaccines.means.r.o <- vaccines.noNA.s%>% group_by(Options)%>% summarise(mean = mean(regret, na.rm = TRUE), sd = sd(regret, na.rm = TRUE)) (vaccines.means.r.o) reasoning<- dat%>% select(why, Age, Gender) reasoning.noNA <- na.omit(reasoning) ggplot(vaccines.noNA.s, aes(x = Information, y = tchoice)) + geom_boxplot() + theme_bw()+ xlab("Information")+ ylab("time") ggplot(vaccines.noNA.s, aes(x = Options, y = tchoice)) + geom_boxplot() + theme_bw()+ xlab("Options")+ ylab("time") ggplot(vaccines.noNA.s, aes(x = Information, y = satisfaction)) + geom_boxplot() + theme_bw()+ xlab("Information")+ ylab("satisfaction") ggplot(vaccines.noNA.s, aes(x = Options, y = satisfaction)) + geom_boxplot() + theme_bw()+ xlab("Options")+ ylab("satisfaction") ggplot(vaccines.noNA.s, aes(x = Information, y = confidence)) + geom_boxplot() + theme_bw()+ xlab("information")+ ylab("confidence") ggplot(vaccines.noNA.s, aes(x = Options, y = confidence)) + geom_boxplot() + theme_bw()+ xlab("options")+ ylab("confidence") ggplot(vaccines.noNA.s, aes(x = Information, y = regret)) + geom_boxplot() + theme_bw()+ xlab("information")+ ylab("regret") ggplot(vaccines.noNA.s, aes(x = Options, y = regret)) + geom_boxplot() + theme_bw()+ xlab("Options")+ ylab("regret") ggplot(vaccines.noNA, aes(x = condition, y = satisfaction)) + geom_point() + theme_bw()+ xlab("")+ ylab("satisfaction") ggplot(vaccines.noNA, aes(x = condition, y = confidence)) + geom_point() + theme_bw()+ xlab("condition")+ ylab("confidence") ggplot(vaccines.noNA, aes(x = condition, y = regret)) + geom_point() + theme_bw()+ xlab("condtion")+ ylab("regret") time.aov <- aov(tchoice ~ Information*Options, data = vaccines.noNA.s) summary(time.aov) etaSquared(time.aov) satisfaction.aov <- aov(satisfaction ~ Information*Options, data = vaccines.noNA.s) summary(satisfaction.aov) etaSquared(satisfaction.aov) TukeyHSD(satisfaction.aov) confidence.aov <- aov(confidence ~ Information*Options, data = vaccines.noNA.s) summary(confidence.aov) etaSquared(confidence.aov) regret.aov <- aov(regret ~ Information*Options, data = vaccines.noNA.s) summary(regret.aov) etaSquared(regret.aov) vaccines.noNA$Age <- as.numeric(vaccines.noNA$Age) mean(vaccines.noNA$Age) ggplot(vaccines.noNA, aes(x = satisfaction)) + geom_histogram() ggplot(vaccines.noNA, aes(x = confidence)) + geom_histogram() ggplot(vaccines.noNA, aes(x = regret)) + geom_histogram() qqPlot(vaccines.noNA$satisfaction) qqPlot(vaccines.noNA$confidence) qqPlot(vaccines.noNA$regret) ggplot(vaccines.noNA, aes(x = regret, y = satisfaction)) + geom_point()+ geom_smooth(method = "lm")+ theme_bw()+ xlab("regret")+ ylab("satisfaction") ggplot(vaccines.noNA, aes(x = confidence, y = satisfaction)) + geom_point()+ geom_smooth(method = "lm")+ theme_bw()+ xlab("confidence")+ ylab("satisfaction") ggplot(vaccines.noNA, aes(x = confidence, y = regret)) + geom_point()+ geom_smooth(method = "lm")+ theme_bw()+ xlab("confidence")+ ylab("regret") cor.test(vaccines.noNA$satisfaction, vaccines.noNA$regret, method = "spearman") cor.test(vaccines.noNA$satisfaction, vaccines.noNA$confidence, method = "spearman") cor.test(vaccines.noNA$regret, vaccines.noNA$confidence, method = "spearman") satisfaction.means <- vaccines.noNA.s%>% summarise(mean = mean(satisfaction, na.rm = TRUE), sd = sd(satisfaction, na.rm = TRUE)) (satisfaction.means) confidence.means <- vaccines.noNA.s%>% summarise(mean = mean(confidence, na.rm = TRUE), sd = sd(confidence, na.rm = TRUE)) (confidence.means) regret.means <- vaccines.noNA.s%>% summarise(mean = mean(regret, na.rm = TRUE), sd = sd(regret, na.rm = TRUE)) (regret.means) vaccines.noNA <- vaccines.noNA[which(vaccines.noNA$Age >= 18),] summary(vaccines.noNA) vaccines.noNA %>% summarise(mean = mean(Age), sd = sd(Age)) vaccines.noNA$Gender <- as.factor(vaccines.noNA$Gender) vaccines.noNA %>% count(male, female, non-binary/thirdgender, prefernottosay) table( factor(vaccines.noNA$Gender,labels=c("male", "female", "non-binary/thirdgender", "prefernottosay")) ) reasoning.noNA$Age <- as.numeric(reasoning.noNA$Age) reasoning.noNA$Gender<- as.factor(reasoning.noNA$Gender) reasoning.noNA <- reasoning.noNA[which(reasoning.noNA$Age >= 18),] reasoning.noNA %>% summarise(mean = mean(Age), sd = sd(Age)) summary(reasoning.noNA) reasoning.noNA$Gender <- recode_factor(reasoning.noNA$Gender, `1` = "male", `2` = "female", `3` = "non-binary/thirdgender", `4` = "prefernottosay") reasoning.noNA$Gender <- as.factor(reasoning.noNA$Gender) table( factor(reasoning.noNA$Gender,labels=c("male", "female", "non-binary/thirdgender", "prefernottosay")) )